
 ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
Vol. 2, Issue 7, July 2015 
 

Copyright to IARJSET                        DOI 10.17148/IARJSET.2015.2715                                           70 

Very Low Complexity Low Latency Architecture 

for Data Encoding Hard Synthetic Error 

Correcting Code 
 

S.Anjaneyulu
1
, K. Radhika Reddy

2
 

M. Tech, JITS, Karimnagar
1
 

JITS, Karimnagar
2
 

 

Abstract: In current scenario, there are situations in a computing system where incoming information needs to be 

compared with a piece of stored data to locate the matching entry, e.g., cache tag array lookup and translation look-

aside buffer matching. Nowadays the reliability issues of memory are Event Upsets (EUs), which are able to invert the 

stored logical value in memory cells. This issue is more serious when the affected memory cells are part of the 

configuration memory used for programming the circuit functionality. The consequences may be alterations of the 

circuit functionality causing errors which may only be corrected by reprogramming the device. A new architecture for 

matching the data protected with an error-correcting code (ECC) is proposed in brief to reduce latency and complexity. 

The proposed architecture is based on the fact that the codeword of an ECC is usually represented in a systematic form 

consisting of the raw data and the parity information generated by encoding, and the proposed architecture parallelizes 

the comparison of the data and that of the parity information. To further reduce the latency and complexity, in addition, 

a new butterfly-formed weight accumulator (BWA) is proposed for the efficient computation of the Hamming distance. 

Grounded on the BWA, the proposed architecture examines whether the incoming data matches the stored data, and if 

not it aims to locate the erroneous bit and they are corrected. The empirical evaluation proves that the proposed 

methodology discovers the best service for reliability issues of memory. 
 

Keywords: Butterfly-Formed Weight Accumulator, Translation Look-Aside Buffer, ECC, EDC, Decimal Matrix Code
 

I.INTRODUCTION 
 

 
 

Data comparison circuit is a logic that has many 

applications in a computing system. For example, to 

check whether a piece of information is in a cache, the 

address of the information in the memory is compared to 

all cache tags in the same set that might contain that 

address. Another place that uses a data comparison circuit 

is in the translation look-aside buffer (TLB) unit. TLB is 

used to speed up virtual to physical address translation. 

Error correcting codes (ECCs) are widely used in modern 

microprocessors to enhance the reliability and data 

integrity of their memory structures. Several error 

detecting codes (EDCs) and error correcting codes 

(ECCs) have been proposed so far to improve cache 

reliability. They range from the simple parity check code 

to the more complex Single Error Correcting/Double 

Error Detecting (SEC/DED) ECC (used to protect the L2 

and L3 caches in the Itanium microprocessor. 
 

II. DATA COMPARISION METHODS 
 

2.1 Decode-And-Compare Architecture 
 

This describes the conventional decode-and-compare 

architecture. Let us consider a cache memory where a k-

bit tag is stored in the form of an n-bit codeword after 

being encoded by a (n, k) code. In the decode-and-

compare architecture, the n-bit retrieved codeword should 

first be decoded to extract the original k-bit tag. The 

extracted k-bit tag is then compared with the k-bit tag 

field of an incoming address to determine whether the tags 

are matched or not. As the retrieved codeword should go 

through the decoder before being compared with the 

incoming tag, the critical path is too long to be employed 

in a practical cache system designed for high-speed access 
 

2.2 Direct Compare Method 
 

Direct compare method is one of the most recent solutions 

for the matching problem. The direct compare method 

encodes the incoming data and then compares it with the 

retrieved data that has been encoded as well. Therefore, 

the method eliminates the complex decoding from the 

critical path. 
 

2.3 Sa-Based Approach 
 

SA-based approach is the one where a special counter is 

constructed with an additional` building block called 

saturating adder (SA).The SA-based direct compare 

architecture reduces the latency and hardware complexity 

by resolving the aforementioned drawbacks. 
 

III. ADVANCED DATA COMPARISION METHODS 
 

3.1 DMC Encoding 
 

Because of high-speed caches and main memories, which 

are prone to soft errors, error correcting codes are used in 

the design and, more recently, in the design of on chip 

memories. For the encoding Decimal matrix code (DMC) 

is proposed to assure reliability in the presence of MCUs 

with reduced performance overheads, and a 4-bit word is 

encoded based on the proposed technique. 
 



 ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
Vol. 2, Issue 7, July 2015 
 

Copyright to IARJSET                        DOI 10.17148/IARJSET.2015.2715                                           71 

 First, during the encoding process, information bits i 

are fed to the DMC encoder, and then the horizontal 

redundant bits H and vertical redundant bits V are 

obtained from the DMC encoder. When the encoding 

process is completed, the obtained DMC codeword is 

stored in the memory. 

 Second, the horizontal redundant bits H are produced 

by performing xor operation of selected symbols per 

row. 
 

 Third, the vertical redundant bits V are obtained by 

xor operation among the bits per column. 
 

 

It should be noted that both divide-symbol and arrange-

matrix are implemented in logical instead of in physical. 

Therefore, the proposed DMC does not require changing 

the physical structure of the memory. 
 

The proposed DMC scheme, for a 4-bit word is as shown 

in Figure. 

 

i1 i0 H0 

   

i3 i2 H1 
   

V1 V0  

   
 

4-bit DMC logical organization 
 

In the above figure the cells from i0 to i3 are information 

bits. The 4-bit word has been divided into two symbols of 

2-bit.k1 = 2 and k2 = 2 have been chosen 

simultaneously.H0 and H1 are horizontal check bits;V0 

and V1 are vertical check bits. The horizontal bits H can 

be obtained as follows: 

 

 

 

 
 

For the vertical bits V, we have 

 

 

 

 

The obtained parity bit is appended with the information 

bits so as to obtain the encoded bit. 
 

3.2 XOR Bank 
 

Xor bank represents the array of bit-wise comparators 

(exclusive OR gates). It performs XOR operations for 

every pair of bits in X and Y so as to generate a vector 

representing the bitwise difference of the two codewords. 

The output from the XOR bank is then fed into BWA 

consisting of half adders (HAs). The numbers of 1’s are 

accumulated by passing the value through the BWA. 
 

XOR bank structure for (8, 4) code 

 

 

 

 

 

 

 
 

3.3 Butterfly Formed Weight Accumulator 
 

The proposed architecture grounded on the data path 

design is given below. It contains multiple butterfly-

formed weight accumulators (BWAs) proposed to improve 

the latency and complexity of the Hamming distance 

computation. The basic function of the BWA is to count 

the number of 1’s among its input bits. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Proposed data path design 
 

The proposed architecture consists of multiple stages of 

HAs as shown in figure where each output bit of a HA is 

associated with a weight. The HAs in a stage are 

connected in a butterfly form so as to accumulate the carry 

bits and the sum bits of the upper stage separately. In other 

words, both inputs of a HA in a stage, except the first 

stage, are either carry bits or sum bits computed in the 

upper stage. This connection method leads to a property 

that if an output bit of a HA is set, the number of 1’s 

among the bits in the paths reaching the HA is equal to the 

weight of the output bit. 

 

 

 

 

 

 

 

 

 

 
 

General structure of BWA 
 

In above figure for example, if the carry bit of the gray-

colored HA is set, the number of 1’s among the associated 

input bits, i.e., A, B, C, and D, is 2. At the last stage of 

above figure the number of 1’s among the input bits, d, 

can be calculated as 
 

 

Since what we need is not the precise Hamming distance 

but the range it belongs to, it is possible to simplify the 

circuit. When rmax = 1, for example, two or more than 

two 1’s among the input bits can be regarded as the same 

case that falls in the fourth range. In that case, we can 



 ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
Vol. 2, Issue 7, July 2015 
 

Copyright to IARJSET                        DOI 10.17148/IARJSET.2015.2715                                           72 

replace several HAs with a simple OR-gate tree as shown 

below. This is an advantage over the SA that resorts to the 

compulsory saturation. 
 

 

 

 

 

 

 

 

 

 
 

Revised structure with OR-gate tree 
 

Each XOR stage generates the bitwise difference vector 

for either data bits or parity bits, and the following 

processing elements count the number of 1’s in the vector, 

i.e., the Hamming distance. Each BWA at the first level is 

in the revised form shown in figure above, and generates 

an output from the OR-gate tree and several weight bits 

from the HA trees. In the interconnection, such outputs are 

fed into their associated processing elements at the second 

level. 

The output of the OR-gate tree is connected to the 

subsequent OR-gate tree at the second level, and the 

remaining weight bits are connected to the second level 

BWAs according to their weights.More precisely, the bits 

of weight w are connected to the BWA responsible for w-

weight inputs. Each BWA at the second level is associated 

with a weight of a power of two that is less than or equal 

to Pmax, where Pmax is the largest power. As the weight 

bits associated with the fourth range are all ORed in the 

revised BWAs, there is no need to deal with the powers of 

two that are larger than Pmax. A simple (8, 4) single-error 

correction double-error detection code is considered and 

the corresponding first and second level circuits are shown 

below. 

 

 

 

 

 

 

 

 
 

First and second level circuits for (8,4) code 
 

3.4 Decision Unit 
 

Taking the outputs of the preceding circuits (BWA), the 

decision unit finally determines the incoming tag matches 

the retrieved codeword by considering the four ranges of 

the Hamming distance. The decision unit is infact a 

combinational logic of which functionality is specified by 

a truth table that takes the outputs of the preceding circuits 

as inputs. For the (8, 4) code that the corresponding first 

and second level circuits are given above, the truth table 

for the decision unit is described in Table I. Since U and V 

cannot be set simultaneously, 
 

3.5 Error Deduction and Correction 
 

Decimal error deduction technique is proposed and it has 

several advantages over the simple binary error deduction 

technique. The Limits of Simple Binary Error Detection 

can be given as follows 
 

 It requires low redundant bits; its error detection 

capability is limited. The main reason for this is that 

its error detection mechanism is based on binary. 
 

 The number of even bit errors cannot be detected. 
 

 Can detect only a finite number of errors finite 

number of errors 
 

 

However, when the decimal algorithm is used to detect 

errors, these errors can be detected so that the decoding 

error can be avoided. The reason is that the operation 

mechanism of decimal algorithm is different from that of 

binary. First of all, the horizontal redundant bits H1 H0 are 

obtained from the original information bits. When MCUs 

occur in symbols, i.e., the bits in symbols are upset to “1” 

from “0” or vice versa. 
 

The proposed DMC can easily correct upsets of the 

following types 
 

 Type 1 is a single error 
 

 Type 2 is an inconsecutive error in two consecutive 

symbols 
 

 Type 3 is a consecutive error in two consecutive 

symbols 
 

 Type 4 is an inconsecutive error in two inconsecutive 

symbols 
 

 Type 5 is a consecutive error in four consecutive 

symbols z 
 

IV. Simulation Results 
 

ISim provides a complete, full-featured HDL simulator 

integrated within ISE. HDL simulation now can be an 

even more fundamental step within your design flow with 

the tight integration of the ISim within your design 

environment. The Xilinx® ISE Simulator (ISim) is a 

Hardware Description Language (HDL) simulator that 

enables you to perform functional (behavioural) and 

timing simulations for VHDL, Verilog and mixed 

language designs. 
 

4.1 Proposed Architecture 
 

 
 4.2 Synthesis Result 
 

To investigate the advantages of using our technique in 

terms of area we implemented and synthesized for a Xilinx 



 ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
Vol. 2, Issue 7, July 2015 
 

Copyright to IARJSET                        DOI 10.17148/IARJSET.2015.2715                                           73 

XC3S500E different versions of a32-bit, 32-entry, dual 

read ports, single write port register file.  

This device utilization includes the following. 
 

 Logic Utilization 

 Logic Distribution 

 Total Gate count for the Design 
  

The device utilization summery is shown below, which 

gives the details of number of devices used from the 

available devices and also represented in 1%. Hence as the 

result of the synthesis process, the device utilization in the 

used device and package is shown for Proposed 

Architecture. 
 

 
 

Figure Device utilization summary of Proposed 

Architecture 
 

4.3    RTL Schematic 
 

The RTL (Register Transfer Logic) can be viewed as blue 

box after synthesize of design is made. It shows the inputs 

and outputs of the system. By double-clicking on the 

diagram we can see gates, flip-flops and MUX. The 

corresponding schematics of the proposed architecture 

after synthesis are shown below. The top level of Proposed 

Architecture has the inputs A and B which are of 8 bit 

each, x as output which as 2bit.  
 

 
 

Top-level of proposed Architecture 

 

 
 

Figure 4: Internal block of proposed Architecture 

The internal block of ripple carry adder shows inputs and 

outputs as well as the intermediate gates and their 

interconnection between them. This internal block 

contains logic gates, flip flops, etc. 

 

 
 

V. CONCLUSION AND FUTURE ENHANCEMENT 
 

To reduce the latency and hardware complexity, a new 

architecture has been presented for matching the data 

protected with an ECC. The proposed architecture 

examines whether the incoming data matches the stored 

data if a certain number of erroneous bits are corrected. To 

reduce the latency, the comparison of the data is 

parallelized with the encoding process that generates the 

parity information. The parallel operations are enabled 

based on the fact that the systematic codeword has 

separate fields for the data and parity. In addition, an 

efficient Processing architecture has been presented to 

further minimize the latency and complexity. As the 

proposed architecture is effective in reducing the latency 

as well as the complexity considerably, it can be regarded 

as a promising solution for the comparison of ECC-

protected data. Though this brief focuses only on the tag 

match of a cache memory, the proposed method is 

applicable to diverse applications that need such 

comparison. 
 

REFERENCE 
 

1.   Jing Guo, Liyi Xiao, Zhigang Mao and Qiang Zhao, “Enhanced 
Memory Reliability Against Multiple Cell Upsets Using Decimal 

Matrix Code”, IEEE Transactions On Very Large Scale Integration 

(VLSI) Systems, Vol. 22, No. 1, January 2014.  
2. D. Radaelli, H. Puchner, S. Wong, and S. Daniel, “Investigation of 

multi-bit upsets in a 150 nm technology SRAM device,” IEEE 

Trans. Nucl. Sci., vol. 52, no. 6, pp. 2433–2437, Dec. 2005.  

3. E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact 

of scaling on induced soft error in SRAMs from an 250 nm to a 22 

nm design rule,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 
1527– 1538, Jul. 2010.  

4. S. Liu, P. Reviriego, and J. A. Maestro, “Efficient majority logic 

fault detection with difference-set codes for memory applications,” 
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 1, 

pp. 148–156, Jan. 2012.  

5. P. Reviriego, M. Flanagan, and J. A. Maestro, “A (64,45) triple 
error correction code for memory applications,” IEEE Trans. 

Device Mater. Rel., vol. 12, no. 1, pp. 101–106, Mar. 2012.  

6.    S. Baeg, S. Wen, and R. Wong, “Interleaving distance selection with 
a soft error failure model,” IEEE Trans. Nucl. Sci., vol. 56, no. 4, 

pp. 2111–2118, Aug. 2009. 

 


	IV. Simulation Results

